MATH 512 HOMEWORK 2

Due Wednesday, March 6

Problem 1. Suppose that κ is measurable and U is a normal measure on κ . Show that $\{\alpha < \kappa \mid \alpha \text{ is an inaccessible cardinal}\} \in U$. Also show that if $\{\tau < \kappa \mid 2^{\tau} \leq \tau^{++}\} \in U$, then $2^{\kappa} \leq \kappa^{++}$.

Recall that κ has the tree property if every tree with height κ and levels of size less than κ has an unbounded branch.

Problem 2. Show that if κ is measurable, then it has the tree property. In particular, measurable cardinals are weakly compact. Hint: given $j: V \to M$ and a tree T with height κ and levels of size less than κ , look at a node on the κ -th level of j(T).

Problem 3. Suppose that κ is measurable and U_1, U_2 are two normal measures on κ such that $U_1 \in Ult(V, U_2)$. I.e. $U_1 < U_2$ in the Mitchell order. Show that $\{\tau < \kappa \mid \tau \text{ is a measurable cardinal}\}$ is stationary.

Recall that κ is strongly compact if for every S, every κ -complete filter on S can be extended to a κ -complete ultrafilter.

Problem 4. Show that if κ is strongly compact, then it is measurable.

Recall that an algebra $\mathcal{B} \subset \mathcal{P}(\kappa)$ is κ -complete if whenever $\langle A_{\alpha} \mid \alpha < \tau \rangle$ are sets in \mathcal{B} for some $\tau < \kappa$, then so is $\bigcap_{\alpha < \tau} A_{\alpha}$.

Problem 5. Show that the following are equivalent for a cardinal κ :

- (1) κ is inaccessible and has the tree property;
- (2) κ is inaccessible and for every κ -complete algebra $\mathcal{B} \subset \mathcal{P}(\kappa)$ of size κ , every κ -complete filter on \mathcal{B} can be extended to a κ -complete ultrafilter.

Each of the above gives a characterization for weak compactness.

Remark 1. A third characterization of weak compactness is the following: κ is inaccessible and $\mathcal{L}_{\kappa,\omega}$ satisfies the Weak Compactness Theorem.

Here the language $\mathcal{L}_{\kappa,\omega}$ contains κ variables, the usual logical connectives and quantifiers, and infinitary connectives $\bigvee_{\alpha < \tau} \phi_{\alpha}$, $\bigwedge_{\alpha < \tau} \phi_{\alpha}$ for any $\tau < \kappa$ (infinite disjunction and conjunction of size less than κ). $\mathcal{L}_{\kappa,\omega}$ satisfies the weak Compactness Theorem if for every set of sentences $\Sigma \subset \mathcal{L}_{\kappa,\omega}$ with $|\Sigma| \leq \kappa$, if every $S \subset \Sigma$ with $|S| < \kappa$ has a model, then Σ has a model.